Routing Protocol Model

J-R. Abrial

September 2004
Purpose of this Lecture

- No more learning about refinement and abstraction (practicing)

- No more learning about modeling conventions (practicing)

- Re-using dynamically the small tree theory we already developed

- Study a practical problem in distributed computing communication

- The example comes from the following paper:

The Abstract Communication Situation with a Mobile Agent

- A mobile agent \mathcal{M} is supposed to travel between sites

- Some fixed agents at sites want to send messages to \mathcal{M}

- In an abstract world:
 - the moves of \mathcal{M} are instantaneous
 - the traveling of messages between sites takes no time
 - the knowledge of the moves of \mathcal{M} is also instantaneous

- Thus fixed agents always send messages where \mathcal{M} is
Initial Situation

\begin{itemize}
 \item a \rightarrow b
 \item d \rightarrow c
\end{itemize}
M moves from c to d
\(\mathcal{M} \) moves from \(d \) to \(a \)
\mathcal{M} moves from a to c
M moves from c to b
A More Concrete Situation

- The moves of \mathcal{M} are still instantaneous

- The traveling of messages between sites still takes no time

- The knowledge of the moves of \mathcal{M} is not instantaneous any more
- When \mathcal{M} moves from site x to site y then
 - Agents of x and y knows it immediately
 - Agents of other sites are not aware of the move
 - They still sent their messages where they believe \mathcal{M} is

- A message arriving at a site which \mathcal{M} has left can be forwarded
Initial Situation
M moves from c to d
M moves from d to a
M moves from a to c
\(M \) moves from \(c \) to \(b \)
Showing the Structural Modifications

Diagram showing structural modifications with nodes labeled a, b, c, and d, and arrows indicating changes in connections.
- The mobile \mathcal{M} is at the root of a tree
Comparing the two Situations

The mobile \mathcal{M} remains at the root of a tree (to be proved however)
A Dynamic Tree Network

Diagram of a network showing nodes and connections.
Formal Description. The State

prp_1: \(il \in S \)

inv_1: \(l \in S \)

inv_2: \(c \in S \rightarrow S \)

inv_3: \(p \in M \rightarrow S \)

inv_4: \(\forall T \cdot \left(\begin{array}{l} T \subseteq S \\ l \in T \\ \{l\} \triangleleft c)^{-1}[T] \subseteq T \\ \Rightarrow \\ S \subseteq T \end{array} \right) \)

Sets:
- \(S \) set of sites
- \(M \) set of com. msgs.

Constants:
- \(il \) initial location of \(M \)

Variables:
- \(l \) location of \(M \)
- \(c \) dynamic channels
- \(p \) sites of com. msgs.
Formal Description. The Events

\[
\text{init} \equiv \begin{align*}
\text{begin} \\
l &:= il \\
c &:= S \times \{il\} \\
p &:= \emptyset \\
\text{end}
\end{align*}
\]

\[
\text{rcv_agt} \equiv \begin{align*}
\text{any} & \ s \text{ where} \\
& s \in S \setminus \{l\} \\
\text{then} \\
l &:= s \\
c(l) &:= s \\
\text{end}
\end{align*}
\]

Exercise:
Define events for sending, forwarding, and delivering messages
Proving the preservation of inv_4 by Event rcv_agt

Assumption

\[\forall T \cdot \begin{cases} T \subseteq S \\ l \in T \\ (\{l\} \perp c)^{-1}[T] \subseteq T \\ \Rightarrow S \subseteq T \end{cases} \]

rcv_agt \ \ \ \ \equiv

any \ s \ where \ s \in S \setminus \{l\}

then

l := s

c := \{l\} \perp c \cup \{l \mapsto s\}

end

To be proved

(since \ s \neq l)

\[\forall T \cdot \begin{cases} T \subseteq S \\ s \in T \\ (\{s, l\} \perp c \cup \{l \mapsto s\})^{-1}[T] \subseteq T \\ \Rightarrow S \subseteq T \end{cases} \]
Proving the preservation of inv_4 by Event rcv_agt (cont’d)

- It is sufficient to prove:

\[T \subseteq S \]
\[s \in T \]
\[\left(\{s, l\} \equiv c \cup \{l \mapsto s\} \right)^{-1}[T] \subseteq T \]
\[\Rightarrow \]
\[T \subseteq S \]
\[l \in T \]
\[\left(\{l\} \equiv c \right)^{-1}[T] \subseteq T \]

But we have (since \(s \in T \)):

\[\left(\{s, l\} \equiv c \cup \{l \mapsto s\} \right)^{-1}[T] = \left(\left(\{l\} \equiv c \right)^{-1}[T] \setminus \{s\} \right) \cup \{l\} \]

Proof by cases:
\(s \notin \left(\{l\} \equiv c \right)^{-1}[T] \) or \(s \in \left(\{l\} \equiv c \right)^{-1}[T] \)
An Even More Concrete Situation

- The moves of M are not completely instantaneous any more

- The traveling of messages between sites still takes no time

- The knowledge of the moves of M is not instantaneous any more
When \mathcal{M} Departs from Site x

- Agents of x do not know where \mathcal{M} is going

- Agents of other sites are not aware of the move

- Messages at x cannot be forwarded until x knows where \mathcal{M} is

- Messages at other sites can be forwarded (in general)
When M Arrives at its destination y (coming from x)

- It sends a “acknowledgment message” to site x to inform of its position.

- Once x has received the “acknowledgment message” it can forward again communication messages which were pending.

- From now on, we have to distinguish:
 - communication messages (still instantaneous)
 - acknowledgment messages (which take some time)
Initial Situation
\(M \) moves from \(c \) to \(d \)

\(M \) sends an acknowledgment message to \(c \): "I am now in \(d \)"

Site \(c \) suspend sending com. msg. until it knows where \(M \) is
\(M \) moves from \(d \) to \(a \)

\(M \) sends an acknowledgment message to \(d \): "I am now in \(a \)"

Site \(d \) suspend sending com. msg. until it knows where \(M \) is
\(M \) moves from \(a \) to \(c \)

\(M \) sends an acknowledgment message to \(a \): "I am now in \(c \)"

Site \(a \) suspend sending com. msg. until it knows where \(M \) is
\(\mathcal{M} \) moves from \(c \) to \(b \)

\(\mathcal{M} \) sends an acknowledgment message to \(c \): "I am now in \(b \)"

Site \(c \) suspend sending com. msg. until it knows where \(\mathcal{M} \) is
No Acknowledgment Message has Arrived yet

\[\text{Diagram with nodes } a, b, c, \text{ and connections.} \]
Acknowledgment Message from a to d Arrives

Site d believes M is in a. It now forwards pending com. msg. to a.
Acknowledgment Message from c to a Arrives

Site a believes M is in c. It now forwards pending com. msg. to c
Site c believes \mathcal{M} is in b. It now forwards pending com. msg. to b.
Acknowledgment Message from d to c Arrives. FAILURE

Site c believes M is in d. It now forwards pending com. msg. to d

The tree structure is destroyed: we have a CYCLE.
Analysis of Failure and “magic” Solution

- The failure comes from the two ack. msg. arriving in the same place

- We must preclude this to happen

- We shall suppose that we have the following “magic” behavior
 - When M sends an acknowledgment msg. to site x
 - It is able to remove pending ack. msgs. arriving to x
Initial Situation
\(\mathcal{M} \) moves from \(c \) to \(d \)

\(\mathcal{M} \) sends an acknowledgment message to \(c \): "I am now in \(d \"")

Site \(c \) suspend sending com. msg. until it knows where \(\mathcal{M} \) is
\(\mathcal{M}\) moves from d to a

\(\mathcal{M}\) sends an acknowledgment message to \(d\): "I am now in a"

Site \(d\) suspend sending com. msg. until it knows where \(\mathcal{M}\) is
M moves from a to c

M sends an acknowledgment message to a: "I am now in $c"

Site a suspend sending com. msg. until it knows where M is
M moves from c to b

M sends an acknowledgment message to c: "I am now in $b"

M "magically" removes the other ack. message arriving to c
First Refinement. The State

\[
\begin{align*}
\text{inv}_5 : & \quad d \in S \rightarrow S \\
\text{inv}_6 : & \quad a \in S \rightarrow S \\
\text{inv}_7 : & \quad c = d \leftrightarrow a
\end{align*}
\]

d \quad \text{new channel structure}

\[a\quad \text{acknowledgment messages}\]

- Invariant \text{inv}_7 is the gluing invariant with the abstraction

- Caution: An ack. msg. from \(y\) to \(x\) is in \(a\) as: \(\{x \mapsto y\}\)

- It corresponds to \(M\) moving from \(x\) to \(y\)
First Refinement. The Events

\[
\begin{align*}
\text{rcv_agt} & \equiv \\
\text{any } s \text{ where } s \in S \setminus \{l\} \text{ then } \\
l & := s \\
a(l) & := s \\
\text{end}
\end{align*}
\]

\[
\begin{align*}
\text{rcv_ack} & \equiv \\
\text{any } s \text{ where } s \in \text{dom}(a) \text{ then } \\
d(s) & := a(s) \\
a & := \{s\} \triangleleft a \\
\text{end}
\end{align*}
\]

- Observe that the pending ack. msg. to \(l\) (if any) is removed since

\[
a(l) \ := \ s \quad \text{is the same as} \quad a \ := \ \{l\} \triangleleft a \cup \{l \mapsto s\}
\]

- Observe that the acknowledgment channel is cleaned \((a \ := \ \{s\} \triangleleft a)\)
Comparing with Previous Version

(abs__rcv_agt) \equiv \forall s \, \text{where} \ s \in S \setminus \{l\} then
\begin{align*}
l &:= s \\
c(l) &:= s
\end{align*}
end

(ref__rcv_agt) \equiv \forall s \, \text{where} \ s \in S \setminus \{l\} then
\begin{align*}
l &:= s \\
a(l) &:= s
\end{align*}
end

(rcv__ack) \equiv \forall s \, \text{where} \ s \in \text{dom}(a) then
\begin{align*}
d(s) &:= a(s) \\
a &:= \{s\} \triangleleft a
\end{align*}
end
Second Refinement: Implementing the “magic” ack. channel

- Magic behavior when sending a new ack. msg. to x:
 - Pending ack. msg. to x are removed

- The mobile M travels with a logical clock

- Each site has a mobility counter

- The mobility counter records the “time” of the last visit of M
- When M arrives at a site y
 - it increments its logical clock
 - it stores its incremented clock in the mobility counter of y
 - it sends a new ack. msg. to its previous location x

- The ack. msg. from y to x is stamped with the new clock value

- When an ack. msg. arrives at a site x, it is accepted
 - only if its stamp value is greater than the mobility counter of x
 - the mobility counter takes the value of the stamp
Initial Situation
\(M \) moves from \(c \) to \(d \)
\mathcal{M} moves from d to a
M moves from a to c
M moves from c to b
No Acknowledgment Message has yet Arrived
Acknowledgment Message from α to d Arrives

- It is accepted
Acknowledgment Message from c to a Arrives

- It is accepted
Acknowledgment Message from b to c Arrives

- It is accepted
Acknowledgment Message from d to c Arrives. NO FAILURE

- It is rejected
- Suppose:
 - \(s_1 \) has emitted an ack. msg. to \(s \) at time 3
 - \(s_2 \) has emitted an ack. msg. to \(s \) at time 5
 - \(s_3 \) has emitted an ack. msg. to \(s \) at time 9

- This will be “recorded” in the refined ack. channel as follows:

\[
s \leftrightarrow \{3 \leftrightarrow s_1, 5 \leftrightarrow s_2, 9 \leftrightarrow s_3\}
\]

- In the abstract ack. channel we simply had: \(s \leftrightarrow s_3 \)
Second Refinement. The State

Variables: l, d, p, b, m

\begin{align*}
\text{inv}_8 & : \quad m \in S \rightarrow \mathbb{N} \\
\text{inv}_9 & : \quad b \in S \rightarrow (\mathbb{N} \rightarrow S) \\
\text{inv}_{10} & : \quad \forall s \cdot (s \in S \Rightarrow m(s) \leq m(l))
\end{align*}

- The mobility counter at l is the maximum
(abs)rcv_agt ≜
any s where
s ∈ S \ {l}
then
l := s
a(l) := s
end

(ref)rcv_agt ≜
any s where
s ∈ S \ {l}
then
l := s
b(l)(m(l) + 1) := s
m(s) := m(l) + 1
end
Second Refinement. The Events

\[\text{thm}_1 : \quad \forall s, n \cdot \begin{cases} s \in S \\ n \in \text{dom} \ (b(s)) \\ m(s) < n \Rightarrow \\ s \in \text{dom} \ (a) \\ a(s) = b(s)(n) \end{cases} \]

(abs_)rcv_ack \quad \equiv \quad \begin{cases} \text{any} \ s, n \ \text{where} \\ s \in \text{dom} \ (a) \\ \text{then} \\ d(s) := a(s) \\ a := \{s\} \lhd a \end{cases}

(ref_)rcv_ack \quad \equiv \quad \begin{cases} \text{any} \ s, n \ \text{where} \\ s \in S \\ n \in \text{dom} \ (b(s)) \\ m(s) < n \ \text{then} \\ d(s) := b(s)(n) \\ a(s) := b(s)(n) \end{cases}

end
Second Refinement. Gluing Invariant

\[\text{inv}_{11} : \forall s \cdot \left(\begin{array}{l} s \in S \\ \text{dom} \ (b(s)) \neq \emptyset \\ \Rightarrow \\ \text{max} \ (\text{dom} \ (b(s))) \leq m(l) \end{array} \right)\]

\[\text{inv}_{12} : \forall s \cdot \left(\begin{array}{l} s \in \text{dom} \ (a) \\ \text{dom} \ (b(s)) \neq \emptyset \\ \Rightarrow \\ a(s) = b(s)(\text{max} \ (\text{dom} \ (b(s)))) \end{array} \right)\]

\[\text{inv}_{13} : \forall s \cdot \left(\begin{array}{l} s \in S \\ \text{dom} \ (b(s)) \neq \emptyset \\ m(s) < \text{max} \ (\text{dom} \ (b(s))) \\ \Rightarrow \\ s \in \text{dom} \ (a) \end{array} \right)\]
Second Refinement. Main Invariant and Theorem

inv_14 : \forall s, n \cdot \begin{cases}
 s \in S \\
 n \in \text{dom}(b(s)) \\
 m(s) < n \\
 \Rightarrow \\
 n = \max(\text{dom}(b(s)))
\end{cases}

thm_1 : \forall s, n \cdot \begin{cases}
 s \in S \\
 n \in \text{dom}(b(s)) \\
 m(s) < n \\
 \Rightarrow \\
 s \in \text{dom}(a) \\
 a(s) = b(s)(n)
\end{cases}
More Refinements

- The move of the mobile \mathcal{M} is not instantaneous any more

- The communication messages are not sent instantaneously
What we Have Learned in this Lecture

- No more mathematical conventions

- Re-using an already introduced small theory (trees)

- How to gradually introduce constraints in refinements (again)

- How things are “magically” possible in an abstraction
Proof Summary for all examples

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Interactive</th>
</tr>
</thead>
<tbody>
<tr>
<td>File</td>
<td>19</td>
<td>4</td>
</tr>
<tr>
<td>Ring</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>Tree</td>
<td>52</td>
<td>19</td>
</tr>
<tr>
<td>Mobile</td>
<td>59</td>
<td>20</td>
</tr>
</tbody>
</table>

- Summary of the proofs with the tool (**total**, **interactive**)

- Tool URL: www.B4free.com
What we Have Learned in this Course

- By the end of the course you should be more comfortable with:

- Modeling (versus programming)

- Abstraction and Refinement

- Some mathematical techniques (for data structures)

- The idea of proving (what to prove)

- Is it the case?